Platelet signaling: a complex interplay between inhibitory and activatory networks
نویسندگان
چکیده
The role of platelets in hemostasis and thrombosis is dependent on a complex balance of activatory and inhibitory signaling pathways. Inhibitory signals released from the healthy vasculature suppress platelet activation in the absence of platelet receptor agonists. Activatory signals present at a site of injury initiate platelet activation and thrombus formation; subsequently, endogenous negative signaling regulators dampen activatory signals to control thrombus growth. Understanding the complex interplay between activatory and inhibitory signaling networks is an emerging challenge in the study of platelet biology, and necessitates a systematic approach to utilize experimental data effectively. In this review, we will explore the key points of platelet regulation and signaling that maintain platelets in a resting state, mediate activation to elicit thrombus formation, or provide negative feedback. Platelet signaling will be described in terms of key signaling molecules that are common to the pathways activated by platelet agonists and can be described as regulatory nodes for both positive and negative regulators.
منابع مشابه
A Boolean view separates platelet activatory and inhibitory signalling as verified by phosphorylation monitoring including threshold behaviour and integrin modulation.
Platelets are critical for haemostasis and blood clotting. However, since under normal circumstances blood should flow without clotting, its function is regulated via a complex interplay of activating and inhibiting signal transduction pathways. Understanding this network is crucial for treatment of cardiovascular and bleeding diseases. Detailed protein interaction and phosphorylation data are ...
متن کاملDynamics and Structure in Cell Signaling Networks: Off-State Stability and Dynamically Positive Cycles
The signaling system is a fundamental part of the cell, as it regulates essential functions including growth, differentiation, protein synthesis, and apoptosis. A malfunction in this subsystem can disrupt the cell significantly, and is believed to be involved in certain diseases, with cancer being a very important example. While the information available about intracellular signaling networks i...
متن کاملIMGT Colliers de Perles and IgSF domain standardization for T cell costimulatory activatory (CD28, ICOS) and inhibitory (CTLA4, PDCD1 and BTLA) receptors.
T cell activation depends on the specific recognition by their T cell receptors (TR) of antigenic peptides bound to major histocompatibility complex (pMHC). Optimal T cell responses occur when T cells not only receive antigen-specific signals through the TR but also non-antigen-specific costimulatory activatory or inhibitory signals through costimulatory receptors. The activatory CD28/B7-1 (or ...
متن کاملPlatelet endothelial cell adhesion molecule-1 regulates collagen-stimulated platelet function by modulating the association of phosphatidylinositol 3-kinase with Grb-2-associated binding protein-1 and linker for activation of T cells
BACKGROUND Platelet activation by collagen depends on signals transduced by the glycoprotein (GP)VI-Fc receptor (FcR)γ-chain collagen receptor complex, which involves recruitment of phosphatidylinositol 3-kinase (PI3K) to phosphorylated tyrosines in the linker for activation of T cells (LAT). An interaction between the p85 regulatory subunit of PI3K and the scaffolding molecule Grb-2-associated...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کامل